PLA33RXE, PLA33RXEDL

Multifunkční analyzátor elektrické sítě

Uživatelský a servisní návod

verze 1.3

Obsah

1. Použití	. 3
2. Bezpečnostní pokyny	. 5
3. Popis přístroje	. 6
4. Čelní panel a štítek přístroje	. 7
5. Instalace	. 8
6. Zapojení	. 9
7. I/O	10
8. Datová konektivita	11
8.1. Rozhraní Ethernet	11
8.2. RS485	12
8.3. Profibus	12
9. Rychlý návod k zapojení a obsluze	13
10. Nastavení konfiguračních parametrů	13
10.1. P_1 Hlavní konfigurační menu	14
10.2. P_2 Parametry komunikace	17
10.3. P_3 - Informace o přístroji, mazání energií	21
11. Režim monitorování	21
11.1. Ovládání a význam symbolů	21
11.2. Maxima, minima a průměrné hodnoty	22
11.3. Signalizace stavu vstupů a výstupů	22
11.4. Elektroměry	23
12. Ovládání pomocí software Power monitor system	24
12.1. Přechod do servisního módu	24
12.2. Definice komunikačního rozhraní	25
12.3. Založení nového přístroje	27
12.4. Konfigurace přístroje	27
12.5. Čas a datum	28
12.6. Komunikace	29
12.7. MQTT	30
12.8. PROFIBUS	31
12.9. Vstupy / výstupy, alarmy	31
12.10. Logování hodnot	32
12.11. Nastavení tarifu	33
12.12. Modbus registry	33
13. Dodatky a technické parametry	34

1. Použití

PLA33RXE je vyriantou analyzátoru sítě PLA33RX, která je navíc vybavena rozhraním Ethernet. Ve své třídě se vyznačuje vysokou vzorkovací frekvencí 25.6kHz (50Hz), počtem vstupů / výstupů a širokou škálou komunikačních rozhraní a protokolů. PLA33RXE je určen k měření elektrických veličin sítí NN, VN, pro 2, 3, 4-vodičovou sít a v sítích TN, TT. Parametry sítě jsou měřeny kontinuálně dle normy ČSN EN 61000-4-30. Pro záznam parametrů sítě lze přístroj volitelně vybavit pamětí Flash o velikost 1GB.

PLA33RXE disponuje až čtyřmi digitálními vstupy / výstupy, třemi digitálními výstupy a třemi releovými výstupy, kterým lze pomocí logických komparátorů definovat funkce podobně jako v PLC, např. alarmy, více stupňové ochrany FVE, apod. Přístroj může být osazen jedním analogovým výstupem 4-20mA.

Komunikační rozhraní RS485 a Ethernet umožňuje komunikaci s volně dostupným programem pro konfiguraci analyzátorů sítě a analýzu naměřených dat BMR Power Monitor Software. Díky široké škále komunikačních rozhraní a protokolů lze přístroj snadno implementovat do nadřazených systému typu SCADA. Přístroj PLA33RXE je dále volitelně možné osadit PROFIBUS datovým rozhraním.

Varianty a objednací kódy analyzátorů sítě PLA33RXE v provedení do panelu:

	PLA3	3RXE	U230) - CN	MD	RAP
Typ přístroje				T	ΓT	
PLA33RXE - Multifunkční analyzátor sítě s rozhraním Ethe	rnet	-				
Napájecí napětí						
U230 - Napájecí napětí 85 265 VAC/DC U60 - Napájecí napětí 24 65 VAC/DC						
Komunikační rozhraní RS485						
 Bez komunikačního rozhraní (přístroj nemůže být vyb: Přístroj vybavený komunikačním rozhraní RS485 	aven periferie	emi MDRAP)				
Paměť dat						
M - 1GB flash paměť pro ukládání naměřených hodnot						
Digitální I/O						
D - 4 digitální I/O						
Releové výstupy						
R - 3 releové výstupy						
Analogový výstup						
A - Analogový výstup 4 - 20 mA						
Profibus						
P - Rozhraní Profibus DP-V0						

Varianty a objednací kódy analyzátorů sítě PLA33RXE v provedení na DIN lištu:

PLA33RXEDL U23	0 - CI	MDF	RAF
Typ přístroie	- T		
PLA33RXEDL - Multifunkční analyzátor sítě s rozhraním Ethernet v provedení na DIN lištu			
Napájecí napětí			
U230 - Napájecí napětí 85 265 VAC/DC U60 - Napájecí napětí 24 65 VAC/DC			
Komunikační rozhraní RS485			
 Bez komunikačního rozhraní (přístroj nemůže být vybaven periferiemi MDRAP) Přístroj vybavený komunikačním rozhraní RS485 			
Paměť dat			
M - 1GB flash paměť pro ukládání naměřených hodnot			
Digitální I/O			
D - 4 digitální I/O			
Releové výstupy			
R - 3 releové výstupy			
Analogový výstup			
A - Analogový výstup 4 - 20 mA			
Profibus			

P - Rozhraní Profibus DP-V0

2. Bezpečnostní pokyny

Toto zařízení vyhovuje "ČSN EN 61010-1 Bezpečnostní požadavky na elektrická měřicí, řídicí a laboratorní zařízení".

Výstraha

Před použitím přístroje a jeho příslušenství si nejdříve podrobně prostudujte celý návod a přečtěte všechny pokyny.

- Instalaci může provádět pouze pracovník s elektrotechnickou kvalifikací.
- Přístroj nesmí být instalován ve vlhkém nebo mokrém prostředí a v blízkosti výbušných plynů.
- Nepracujte na zařízení sami.
- Přístroj používejte pouze v souladu s uvedenými pokyny.
- Před instalací zkontrolujte, zda výrobek nebo příslušenství není poškozeno.
- Před rozpojením měřícího okruhu proudu nezapomeňte zkratovat svorky MTP (měřících transformátorů proudu).
- Veškeré instalační zásahy provádějte při vypnutém přístroji.
- Nepřivádějte vstupní napětí a měřící proud vyšší, než je rozsah přístroje.
- Pokud přístroj nezobrazuje měřené hodnoty, okamžitě jej vypněte a ověřte změřením známé napětí.
- Dodržujte místní bezpečnostní předpisy a nařízení.
- Použijte prostředky osobní ochrany tam, kde hrozí úraz elektrickým proudem.

3. Popis přístroje

Analyzátor sítě PLA33RXE je určený pro stacionární montáž s měřením proudů pomocí proudových transformátorů X/5 nebo X/1. Přístroj je navržen pro monitorování parametrů třífázových i jednofázových sítí NN a VN. Design přístroje je postaven na 32 bitovém mikroprocesoru, který zaručuje přesné měření se vzorkováním 25.6kHz (pro 50Hz) nebo 30.72kHz (pro 60Hz). Dle normy EN 61000-4-30 jsou parametry sítě měřeny kontinuálně bez mezer ve všech fázích.

Měřené hodnoty:

Hodnota	L1	L2	L3	L1-2	L2-3	L3-1	∑L1-L3	Max	Min	Avg	Rozsah měření	Displej zobrazení	Přesnost
Fázové napětí	•	•	•					•	•	•	10600V	01MV	0.2%
Mezifázové napětí				•	•	•		•	•	•	181000V	01MV	0.2%
Frekvence	•							•	•	•	4070Hz	4070Hz	10mHz
Proud	•	•	•				•	•	•	•	0.0018.5A	01MA	0.2%
CosΦ	•	•	•				•	•	•	•	0.01L0.01C	0.01L0.01C	1%
Power factor	•	•	•				•	•	•	•	0.01L0.01C	0.01L0.01C	1%
THDU L-N	•	•	•					•	•	•	0999%	0999%	5%
THDU L-L				•	•	•		•	•	•	0999%	0999%	5%
THDI	•	•	•					•	•	•	0999%	0999%	5%
TDD	•	•	•					•	•	•	0999%	0999%	5%
Napěťové harmonické	•	•	•	•	•	•		•		•	0999%	0999%	class 1
Proudové harmonické	•	•	•					•		•	0999%	0999%	class 1
Nesymetrie napětí							•	•	•	•	0100%	0100%	0.3%
K-faktor	•	•	•					•	•	•			
Nesymetrie proudu							•	•	•	•			0.5%
Činný výkon	•	•	•				•	•	•	•	015.3kW	09999GW	0.4%
Jalový výkon	•	•	•				•	•	•	•	015.3kvar	09999Gvar	0.4%
Zdánlivý výkon	•	•	•				•	•	•	•	015.3kVA	09999GVA	0.4%
Distortion power	•	•	•				•	•	•	•			0.5%
Činná energie +/-							•				09999GWh	09999GWh	class 1
Jalová induktivní energie +/-							•				09999Gvarh	09999Gvarh	class 2
Jalová kapacitní energie +/-							•				09999Gvarh	09999Gvarh	class 2
Teplota											-40+125°C		1°C

4. Čelní panel a štítek přístroje

PLA 33 Power Line Analyzer $L I Arg RI R2 R3$ $Ind A GRAV RM KVArh MkVArh MkVMh Mr Mr$	L1 A^{ag} ind A^{ag} B
SET pro vstup do menu, uložení parametrů	Pohyb v menu, navýšení hodnoty
ESC ESC zrušení volby, odchod z menu	Pohyb v menu, snížení hodnoty
Aktivní ukládání do Flash paměti	R1 R2 R3 Aktivní reléové výstupy
K1 💽 Aktivní digitální výstupy	AVG, Prog, L-L Zobrazení měřené hodnoty, statusy

5. Instalace

PLA33RXE je v provedení do panelu. Potřebný výřez je 92x92mm. Přístroj je uchycen na panel pomocí dvou aretačních šroubků. Provedení svorek se může lišit dle varianty přístroje.

PLA33RXEDL je ve standardizovaném provedení na DIN lištu o velikosti 5x DIN.

6. Zapojení

Hodnota a typ použitého napájecího napětí musí být shodné s údaji na zadním štítku přístroje. Standardně je přístroj dodáván s univerzálním napájením 85 .. 265VAC. Je možná varianta pro 24 .. 65 VAC/DC. Použitá frekvence může být 50Hz nebo 60Hz. Měřící obvody napětí a obvody napájení musí být připojeny přes jističe nebo pojistky (2 - 10 A) umístěné v dosahu zařízení pro snadný přístup a manipulaci. Měřící obvody proudu musí být zapojeny přes měřící transformátory proud s převodem X/5A nebo X/1A.

Zapojení přístroje viz uvedená tři schémata. Jiná zapojení nejsou přípustná.

3F zapojení v síti TN-C-S (TN-C)

3F zapojení v síti TN-C-S bez N

1F zapojení

7. I/O

Analyzátor může být vybaven až čtyřmi digitálními vstupy / výstupy, třemy digitálními výstupy a třemi releovými výstupy. Vstupy / výstupy mohou být použity např. jako čítač impulzů, generátor pulzů, logický vstup, logický výstup, alarmový výstup a jiné. Vstupy / výstupy mohou být ovládány pomocí jednoduchých logických komparátorů nebo lze definovat i složitější pravidla podobně jako v PLC pomocí grafického návrháře softwaru BMR Power Monitor System. Stav vstupů / výstupů lze také číst případně nastavit z nadřízeného systému pomocí protokolu Modbus.

8. Datová konektivita

Analyzátor sítě PLA33RXE může být vybaven komunikačním rozhraním Ethernet, RS485 a Profibus. Pro komunikaci se softwarem BMR Power Monitor System lze zvolit Ethernetové nebo RS485 rozhraní.

8.1. Rozhraní Ethernet

Na Ethernetovém rozhraní jsou k dispozici následující komunikační protokoly: Modbus TCP, Modbus over TCP, MQTT, DHCP klient a SNTP.

Poznámka

Výchozí konfigurace Ethernetového rozhraní IP adresa: 192.168.1.233 Brána: 192.168.1.1 Maska: 255.255.255.0

8.1.1. Modbus TCP

Průmyslový protokol Modbus TCP je ve výchozím stavu dostupný na TCP portu: 502. Tabulka modbus registrů s popisem adres a typu hodnot je dostupná na webových stránkách firmy BMR s.r.o.

Důležité

Pro toto rozhraní je maximální povolený počet souběžně otevřených spojení omezen na tři.

8.1.2. Modbus RTU over TCP

Průmyslový protokol Modbus RTU over TCP je ve výchozím stavu dostupný na TCP portu: 10001. Tabulka modbus registrů s popisem adres a typu hodnot je dostupná na webových stránkách firmy BMR s.r.o.

Důležité

Pro toto rozhraní je maximální povolený počet souběžně otevřených spojení omezen na tři.

8.1.3. Převodník Ethernet <-> RS485

Přístroj může být nastaven tak, aby fungoval jako převodník mezi rozhraním Ethernet a RS485. Pokud se ID ve zprávě přijaté přes Ethernetové rozhraní shoduje s ID přístroje, analyzátor vrátí hodnoty svých registrů. V případě, že se ID ve zprávě přijaté pře Ethernetovém rozhraní neshoduje s ID přístroje, je zpráva upravena a odeslána na rozhraní RS485 pomocí protokolu Modbus RTU. Přístroj poté čeká na odpověď od zařízení a tuto odpověď následně upraví a odešle zpět přes Ethernetové rozhraní. Funkce převodníku je k dispozici pro oba protokoly, a to jak pro Modbus TCP, tak pro Modbus RTU over TCP.

8.1.4. MQTT

MQTT je jednoduchý protokol pro komunikaci mezi klienty skrz centrálního zprostředkovatele (MQTT broker), který řídí tok zpráv. Zprávy jsou organizovány do témat (topics), kde odesílatelé, nazývaní publishery, zasílají data do konkrétních témat. Broker tyto data ukládá a distribuuje je dalším zařízením nebo nadřízeným systémům, které jsou odběrateli (subscribers) pro tato témata.

Samotný MQTT protokol nezahrnuje specifikaci formátu přenášených zpráv, a proto byl zvolen formát zpráv JSON. Tento formát je oblíbený, protože je široce podporován v různých prostředích a programovacích jazycích, což usnadňuje implementaci zařízení do nadřízených systémů.

Poznámka

Detailní popis protokolu MQTT a postup implementace přístroje PLA33RXE do nadřazeného systému naleznete na stránkách firmy BMR s.r.o

8.2. RS485

Přístroj je vybaven galvanicky odděleným komunikačním rozhraním RS485 s podporou protokolu Modbus RTU. Komunikační linka RS485 je sběrnicového typu tvořena krouceným párem jejíž délka je maximálně 1000m. Každý přístroj připojený na sběrnici RS485 musí mít nastavené jednoznačné ID a správné parametry komunikace linky RS485 - rychlost komunikace, počet stop bitů a paritu. Napájení sběrnice zajišťuje převodník signálu RS485 na jiné rozhraní nebo nadřazený přístroj vybavený komunikační bránou pro rozhraní RS485.

8.3. Profibus

Pro rychlou výměnu dat s nadřazeným systémem může být přístroj volitelně vybaven rozhraním PROFIBUS verze DP0. Zařízení vybavená rozhraním Profibus DP-V0 umožňují cyklickou výměnu dat, přičemž na tomto rozhraní může být odesláno nejvíce 244 bytů. Z tohoto důvodu umožňuje zařízení rozdělit komunikaci do čtyř různých profilů (stránek), které jsou vybrány prostřednictvím číselného přepínání (1 - 4) ve zprávách odesílaných z PLC.

BMR s.r.o. Lipovka 17 51601 Rychnov nad Kněžnou Tel:+420 494533602,494533804 Email: obchod@bmr.cz Web: http://www.bmr.cz

9. Rychlý návod k zapojení a obsluze

Pro uvedení analyzátoru PLA33RXE do provozu je zapotřebí nastavit několik základních parametrů. Postupujte podle následujících instrukcí:

- 1. Zapojte přístroj podle vybraného schématu.
- 2. Připojte správné napájecí napětí dle štítku na zadní straně přístroje.
- 3. Stiskněte klávesu SET po dobu nejméně 5 vteřin pro vstup do konfiguračního módu.
- 4. Vstupte do menu P_1 stisknutím klávesy SET.
- 5. Pokud je použit měřící transformátor napětí, nastavte jeho převodový poměr v parametru Utr. Klávesa ▲ je použita pro přepínání parametrů v rámci menu. Klávesa SET aktivuje editaci a ukládá nově nastavenou hodnotu. Změna hodnoty je možná pomocí kursorových kláves ▲ (+) a ▼ (-).
- 6. Nastavte převodový poměr měřícího transformátoru proudu v parametru Itr. Pro změnu hodnoty použijte klávesy
 ▲ (+) a ▼ (-). Nově nastavený převodový poměr potvrďte klávesou SET.
- 7. Zkontrolujte použitou frekvenci přístroje, parametr Fr (50 nebo 60Hz).
- 8. Pro návrat z menu P_1 stiskněte klávesu ESC. Další stisknutí klávesy ESC ukončí konfigurační mód a vrátí přístroj do normálního monitorovacího módu.
- 9. Zkontrolujte měřené hodnoty zda odpovídají skutečnosti.

10. Nastavení konfiguračních parametrů

Nastavení analyzátoru PLA33RXE je rozděleno do tří samostatných menu v konfiguračním módu. Pro vstup do konfiguračního módu stiskněte klávesu SET po dobu nejméně 5 vteřin. Na displeji přístroje se zobrazí následující obrazovka. Pro pohyb v menu slouží kursorové klávesy ▲ a ▼. Klávesa ▲ je normálně použita pro pohyb dokola v rámci zvoleného menu. Editace parametru je aktivována klávesou SET a změna hodnoty daného parametru kursorovými klávesami ▲ a ▼. Nově nastavená hodnota je potvrzena a uložena po stisku klávesy SET. Klávesou ESC je možné kdykoliv ukončit proces editace parametru, provést návrat do nadřazeného menu či ukončit konfigurační mód.

Parametr	Popis
P_1	Hlavní konfigurační menu
P_2	Nastavení komunikačních parametrů
P_3	Informace o verzi firmware, mazání energií

Poznámka

Rychloběh je aktivován trvalým držením klávesy 🛦 nebo 💙.

10.1. P_1 Hlavní konfigurační menu

V hlavním konfiguračním menu P_1 se nachází nastavení nutná pro správný provoz přístroje. Tabulka obsahuje seznam dostupných parametrů s výchozími hodnotami a rozsahy nastavení. Pro pohyb v rámci menu slouží kursorová klávesa \blacktriangle . Editace parametru je aktivována klávesou **SET** a změna hodnoty daného parametru kursorovými klávesami $\bigstar \nabla$. Nově nastavená hodnota je potvrzena a uložena po stisku klávesy **SET**. Klávesou **ESC** je možné kdykoliv ukončit proces editace parametru nebo provést návrat do nadřazeného menu.

Parametr	Význam položky	Tovární nastavení	Rozsah nastavení
Con	typ zapojení měřících vstupů	3Un_3I	3Un_3I, 1Un_1I, 3UL_3I
Utr	primární / sekundární napětí (převodový poměr U)	230 / 230	max. převod 750 000
Itr	primární / sekundární proud (převodový poměr I)	5 / 5	max. převod 10 000
Fr	nastavení frekvence	50Hz	50 nebo 60Hz
bcl	podsvícení displeje	On	On, OFF, 20-100%, krok 10%
Y	nastavení roku 20	09	09 99
M	nastavení měsíce	01	01 12
D	nastavení dne	01	01 31
h	nastavení hodiny	00	00 23
M	nastavení minuty	00	00 59
PAS	nastavení hesla	OFF	3 číslice
rES	tovární nastavení		

Tabulka 1. Konfigurační menu P_1:

10.1.1. Con - Typ zapojení měřících vstupů

10.1.2. Utr – převodový poměr měřícího transformátoru napětí

Pokud jsou použity měřící transformátory napětí, např. pro použití ve VN aplikacích, je nutné zadat jejich převodový poměr pro správné zobrazení velikosti napětí. V parametru Utr se zadává primární a sekundární napětí převodního transformátoru. Pokud je hodnota primární strany např. 6000 V a sekundární strany 100 V, je převodový poměr Utr roven 60.

10.1.3. ltr – převodový poměr měřícího transformátoru proudu

Poznámka

Měřící rozsah proudového vstupu je od 10 mA do 6 A. Maximální převod proudového transformátoru je 10000 / 5 A.

10.1.4. Fr – frekvence měřené sítě

PLA33RXE umožňuje měření v el. sítích s frekvencí 50Hz nebo 60Hz. Pokud je použita jiná frekvence než 50Hz je nutné tento parametr přenastavit.	Fr + ^{Hz} Prog 50
---	--

10.1.5. bcl - Nastavení podsvícení displeje

Přístroj je vybaven podsvíceným LCD displejem pro lepší zobrazení při zhoršených světelných podmínkách. Lze nastavit jas svítivosti nebo podsvícení zcela vypnout nebo zapnout.	bcĹ % ¢ Prog	
	90	

10.1.6. Vnitřní kalendář a reálný čas

10.1.7. PAS - heslo

Proti neoprávněnému zásahu do nastavení přístroje je možné zadat tříciferné heslo, které zamezí možnosti uložit provedené změny bez znalosti hesla. Vstupem do parametru PAS a aktivací nastavení hesla klávesou SET je možné zadat heslo. Klávesa ▲ nastavuje číslo, klávesa ▼ posouvá kursor na další číslo hesla. Nastavené heslo je po potvrzení klávesou SET uloženo do přístroje.	PRS ÷	rog
--	-----------------	-----

10.1.8. rES - reset přístroje do továrního nastavení

Důležité

Pro provedení resetu zařízení je nutné podržet klávesu SET na položce "rES" po dobu alespoň 5 vteřin.

Důležité

Po resetu přístroje do výchozího továrního nastavení je potřeba znovu nastavit všechny potřebné konfigurace.

10.2. P_2 Parametry komunikace

Druhé konfigurační menu P_2 obsahuje parametry komunikačního rozhraní RS485 a Ethernet.

Tabulka 2. Konfigurační menu P_2

Parametr	Význam položky	Tovární nastavení	Rozsah nastavení
Id	modbus ID - jedinečné identifikační číslo přístroje pro protokol Modbus na sběrnici RS485 nebo rozhraní Ethernet	0	0 255
bd	RS485 - komunikační rychlost přenosu dat	9,6	9,6 / 19,2 / 38,4 / 57,6 / 115 kBd
PAr	RS485 - parita		(žádná), _o_ (lichá), _E_ (sudá)
St	RS485 - stopbit	1	1/2
IP	TCP/IP adresa přístroje	192.168.1.233	0 - 255
GAt	TCP/IP brána přístroje	192.168.1.1	0 - 255
MAS	TCP/IP maska přístroje	255.255.255.0	0 - 255
dHC	DHCP klient	Off	On, Off
Ott	MQTT protokol	Off	On, Off
t-P	Modbus TCP port	502	0 - 65535
M-P	Modbus RTU over TCP port	10001	0 - 65535

Důležité

Parametry rozhraní RS485 v přístroji musí být konfigurovány tak, aby byly v souladu s parametry sběrnice RS485, na kterou je přístroj připojen.

Důležité

Před připojením přístroje PLA33RXE do sítě Ethernet, prosím, ověřte a případně upravte nastavení jeho Ethernetového rozhraní, abyste předešli kolizím v síti Ethernet.

10.2.1. Id - ID přístroje na lince RS485

10.2.2. bd - komunikační rychlost přenosu dat na lince RS485

10.2.3. Par - Parita

kontrola komunikace paritou, která je ve výchozím stavu neaktivní (), může být nastavena na sudou (_E_) nebo lichou (_O_) paritu	PRr
	♣ Prog

10.2.4. St - stopbit

počet stopbitů	C L
	Prog

10.2.5. IP - TCP/IP adresa

TCP/IP adresa přístroje - Stiskem klávesy SET se otevře zobrazení a konfigurace IP adresy přístroje. Pokud je aktivována funkce DHCP klienta, je zobrazí se IP adresa přidělená DHCP server.	; P	
	\$	Prog

10.2.6. GAt - TCP/IP brána

TCP/IP brána přístroje - Stiskem klávesy SET se otevře zobrazení a konfigurace síťové brány přístroje. Pokud je aktivována funkce DHCP klienta, zobrazí se síťová brána přidělená DHCP server.		6 8 £	
		► P	'rog

10.2.7. MAS - TCP/IP maska přístroje

TCP/IP maska přístroje - Stiskem klávesy SET se otevře zobrazení a konfigurace masky sítě. Pokud je aktivována funkce DHCP klienta, zobrazí se maska sítě ethernet přidělená DHCP server.		กกร
		► Prog

10.2.8. dHC - DHCP klient

Povolení nebo zakázání režimu DHCP klienta: Když je DHCP klient aktivován, v položkách IP, Gat a MAS se zobrazí parametry přidělené DHCP serverem.			
	♦ Prog		
	[] F F		

10.2.9. Ott - MQTT protokol

Povolení nebo zakázání protokolu MQTT	022
	♦ Prog
	Ũn

10.2.10. t-P - Modbus TCP port

Modbus TCP port	
	<u></u>
	Prog
	582

10.2.11. M-P - Modbus RTU over TCP

10.3. P_3 - Informace o přístroji, mazání energií

V menu P_3 je informace o verzi firmware, parametr FIr [1.0.0] a verze HW - parametr VEr [1.0.0].

Parametr	Význam položky
FIr	Firmware přístroje
Ver	Hardwarová verze přístroje
CLr E_1	Vymazání hodnot elektroměru Tarif - 1
CLr E_2	Vymazání hodnot elektroměru Tarif - 2
CLr E_3	Vymazání hodnot elektroměru Tarif - 3
CLr E_4	Vymazání hodnot elektroměru Tarif - 4

Tabulka 3. Konfigurační menu P_3

10.3.1. CLr - Mazání hodnot elektroměrů

V tomto menu lze ručně vymazat ukládané energie pro všechny čtyři tarify. Klávesami ▲ a ▼ vyberte požadovaný tarif. Podržením klávesy SET po dobu nejméně 5 vteřin dojde k vymazání hodnot energií daného tarifu.

11. Režim monitorování

Přístroj se standardně nachází v monitorovacím režimu, kdy jsou na displeji zobrazeny měřené parametry síťě. Měřené parametry jsou logicky seskupeny a zobrazeny ve skupině souvisejících obrazovek. V případě, že uživatel vstoupí do konfiguračního menu přístroje a po dobu jedné minuty neprojeví žádnou aktivitu, přístroj se automaticky přepne zpět do monitorovacího režimu a na obrazovce se objeví informace o fázovém napětí.

11.1. Ovládání a význam symbolů

Přístroj je vybaven přehledným uživatelským displejem se symboly zobrazovaných hodnot pro měřené veličiny. Pro pohyb mezi jednotlivými skupinami (úrovněmi) souvisejících obrazovek slouží klávesa ▲. V rámci jedné skupiny lze přepínat jednotlivé obrazovky klávesou ▼. Skupiny (úrovně) jsou uzavřeny, pokud je zobrazena poslední obrazovka skupiny, po stisknutí klávesy ▼ se opět zobrazí první obrazovka skupiny.

Z kterékoliv obrazovky libovolné skupiny se lze dostat na první obrazovku (fázová napětí) stisknutím klávesy ESC. Struktura zobrazení hodnot:

11.2. Maxima, minima a průměrné hodnoty

Pro všechny měřené parametry je možné zobrazit jejich maximální, minimální a průměrné hodnoty za definovaný časový interval, který je ve výchozí stavu nastaven na 10 minut - hodnotu lze změnit prostřednictvím programu Power Monitor System. Pro zobrazení maximálních hodnot měřených veličin stačí krátce stisknout tlačítko SET. Maximální hodnoty jsou označeny symbolem \blacktriangle před zobrazovanou hodnotou. Druhým stiskem tlačítka SET získáte přístup k minimálním hodnotám, které jsou označeny symbolem \blacktriangledown před zobrazovanou hodnotou. Třetím stiskem tlačítka SET se na displeji zobrazí průměrné hodnoty, které jsou označeny symbolem \bigstar . Dalším stiskem tlačítka SET se opět vrátíte k aktuálním hodnotám.

11.3. Signalizace stavu vstupů a výstupů

Vstupy a výstupy se mohou nacházet ve čtyřech provozních stavech. Signalizace na displeji je společná pro všechny tyto stavy s významy popsanými v následující tabulce.

Parametr	Popis	Aktivní	Neaktivní
In	vstup	K1)	К1()
Out	výstup	K1)	К1()
PuL	pulsní výstup	K1@ puls	К1()
AL	alarmový výstup	K1 🖲 bliká	

Tabulka 4. Signalizace stavů I/O

Stavy reléových výstupů jsou signalizovány podtržením písmen R1, R2, R3 v pravém horním rohu displeje.

11.4. Elektroměry

Analyzátor PLA33RXE obsahuje čtyři tarifní skupiny elektroměrů pro měření odběru a dodávky. Po výběru daného tarifu se pomocí šipky ▼ zobrazují hodnoty: činná energie +/- (odběr/dodávka), jalová induktivní energie +/- a jalová kapacitní energie +/-.

Poznámka

Vynulování všech elektroměrů lze provést v konfiguračním menu P_3 nebo pomocí software BMR Power monitor system.

12. Ovládání pomocí software Power monitor system

PLA33RXE umožňuje základní nastavení přímo pomocí fyzických tlačítek na samotném přístroji. Pro rozšířené funkce a pokročilější konfiguraci je však třeba využít softwaru Power Monitor System. Tento software poskytuje uživatelům přehledné a jednoduché možnosti pro nastavení přesné hodnoty času, definování parametrů komunikace Profibus Ethernet a RS485, vytváření vstupů/výstupů a logických alarmů, stejně jako záznam měřených hodnot do databáze a další pokročilé funkce.

12.1. Přechod do servisního módu

Pro nastavení komunikačního rozhraní, přidání zařízení do programu PMS a provedení konfigurace zařízení, je nezbytné přepnout program PMS do konfiguračního módu.

Poznámka

Při přechodu do konfiguračního módu je dočasně pozastavena komunikace s přístrojem. Přístroj nadále provádí měření a ukládá naměřené parametry do své paměti flash, pokud je jí vybaven. K obnovení komunikace a stažení uložených dat dojde po opuštění servisního módu.

12.2. Definice komunikačního rozhraní

Před založením nového zařízení do softwaru PMS, je nutné definovat komunikační rozhraní, které bude sloužit k vzájemné komunikaci mezi softwarem a přístrojem.

12.2.1. Modbus TCP

Definice komunikačního rozhraní Modbus TCP

Důležité

V kroku číslo 6 je třeba konfigurovat hodnoty tak, aby odpovídaly nastavení analyzátoru sítě PLA33RXE.

12.2.2. Modbus RTU over TCP

Definice komunikačního rozhraní Modbus RTU over TCP

Důležité

V kroku číslo 6 je třeba konfigurovat hodnoty tak, aby odpovídaly nastavení analyzátoru sítě PLA33RXE

12.2.3. USB převodník

Rozhraní pro převodník BMR USB <-> RS485

Důležité

V kroku číslo 6 je třeba zadat sériové číslo, které naleznete na zadní straně převodníku USB <-> RS485

12.2.4. Serial PC

Klasický sériový COM port pro obecný převodník RS485.

Důležité

V kroku číslo 6 je třeba zvolit COM port, který odpovídá převodníku. Dále je třeba konfigurovat parametry sběrnice RS485 tak, aby odpovídaly nastavením připojených zařízení na této sběrnici.

12.3. Založení nového přístroje

BMR 1 (1.5.1.13) - Firebird SQL ad	tive				-		×
Hlavní Zařízení Nápověda							
Moje zaříz 🐑 Nastavit zařízení	2						
🐖 📾 Komunikační rozhraní							
Konfigurace							
							_
K	onfigurace zařízení						×
3	🗞 📢 🔽 🖬						-11
		Typ:	PLA33RX	\sim			- 11
	Konfigurace zařížení X	Umistēni:		_			- 84
		ID RS485:	1	÷ ,			- 88
	4 PLA33RX	Komunikace:	TCP soket 192 168 1 233 502	6			- 88
	GCR	L					- 88
	PLA44 PLA34						- 88
	PLA404 PLA404						- 88
							- 88
	5 OK Zrušit						- 88
							- 88
							- 88
		7 ок	Zrušt				- 84
					_	-	-

Důležité

V kroku číslo 6 je nutné konfigurovat ID zařízení pro sběrnici RS485, tak aby odpovídalo nastavení v samotném zařízení a vybrat komunikační rozhraní, které bude využito pro komunikaci s tímto zařízením.

12.4. Konfigurace přístroje

12.4.1. Hlavní parametry

Parametr	Popis		
Typ připojení	Způsob zapojení měřících vstupů přístroje		
Parametry sítě → Nominální napětí	Jmenovité napětí měřené elektrické sítě		
Frekvence	Frekvence měřené elektrické sítě		
Napěťový vvstup → Primární napětí Sekundární napětí	Převodový poměr předřadných měřících transformátorů napětí. Pokud nejsou předřadné měřící transformátory napětí použity, je nutné zadat stejnou hodnotu primátního a sekundárního napětí		
Proudový vstup → Primární proud Sekundární proud	Převodový poměr předřadných měřících transformátorů proudu. Pokud nejsou předřadné měřící transformátory proudu použity, je nutné zadat stejnou hodnotu primátního a sekundárního proudu		
Průměrování hodnot → Perioda průměrování	Interval pro průměrování online dat. Průměrné hodnoty mohou být zobrazeny v software PMS, získány přes komunikační protokol Modbus nebo viditelné na displeji zařízení.		
Pruměrování hodnot → min / max reset interval	Perioda nulování minim a maxim online hodnot. Hodnoty min / max mohou být zobrazeny v software PMS, získány přes komunikační protokol Modbus nebo viditelné na displeji zařízení		
Energie → Interval ukládání	Interval ukládání Energií do paměti flash		

PLA33RX: Firma				
Write configure Export	X t configure			
Hlavní parametry Časa a datum: Komunikace	Profibus Vstupy/Výstupy Alarma	Nastavení displeje	Log data Tariff control Commands	
Typ připojení 3UN_3/ L1 K L L2 K I K L L3 K I K L K L K L K L K L K L K L K L	Parametry sítě Nominální napětí (230 Jmenovitý proud [A 5 ' Frekvence: 50 Hz	∕]: : 	Napětový vstup Primámi napěti [V]: 230 🔄 Sekundámi napěti [V]: 230 📚	Průměrování hodnot Perioda průměrování [s]: 10
	1 3		Proudový vstup Primámí proud [A]: 200 🔄 Sekundámí proud [A]: 51 💽	Energie Interval ukládán í: 15

12.5. Čas a datum

Parametr	Popis		
Časové pásmo	Určení časového pásmu, v němž se nachází přístroj		
Časové pásmo → Nastavit datum a čas	Nastavení ručně zadaného času		
Časové pásmo → Nastavit datum a čas z PC	Nastavení času počítače		
Letní čas → Začátek letního času	Den, kdy v minulosti začal platit letní čas		
Letní čas → Konec letního času	Den, kdy v minulosti přestal platit letní čas		
Letní čas → Posun letního času	Hodnota o kresou se čas posune v letním období. V regionech, kde se letní čas neuplatňuje se tato hodnota nastavuje na 0.		

PLA33RX:	
Zapsat konfiguraci Importovat konfiguraci Exportovat konfiguraci	
Hlavní parametry Čas a datum Komunikace MQTT Nastavení displeje Záznam d	at Nastavenítarifu Příkazy Opřístroji
Časové pásmo (UTC+01:00) Amsterdam, Berlín, E ✓ → UTC Offset H/m: 1 🛊 0 🐳	Letní čas Začátek letního času: 31.03.2002 02:00 □ ▼ Konec letního času:
26.10.2023 10:55:54	27.10.2002 03:00
Čas PC: 26.10.2023 11:19:45 Nastavit datum a čas z PC Čas zařízení: 26.10.2023 11:19:42	Posun letního času [s]: 3600

12.6. Komunikace

Parametr	Popis			
$\mathbf{RS485} \rightarrow \mathbf{ID} \ \mathbf{RS485}$	Identifikační číslo zařízení v komunikačním protokolu Modbus			
$\mathbf{RS485} \rightarrow \mathbf{Baud} \ \mathbf{rychlost}$	Rychlost komunikace na rozhraní RS485			
RS485 → Parita	Parita použitá na rozhraní RS485			
$\mathbf{RS485} \rightarrow \mathbf{Stopbit}$	Počet stopbitů použitých na rozhraní RS485			
Ethernet \rightarrow IP adresa	IP adresa v síti ethernet			
Ethernet \rightarrow IP maska	Maska sítě ethernet			
Ethernet \rightarrow Brána	Brána sítě ethernet			
Ethernet → MAC	MAC adresa v síti ethernet			
DHCP	Aktivace nebo deaktivace DHCP klienta			
Modbus → Modbus TCP Aktivní	Povolení protokolu Modbus TCP na rozhraní ethernet			
$\mathbf{Modbus} \rightarrow \mathbf{Modbu} \ \mathbf{TCP} \ \mathbf{Port}$	Port protokolu Modbus TCP			
Modbus → Modbus RTU over TCP Aktivní	Povolení protokolu Modbus RTU over TCP na rozhraní ethernet			
$\begin{array}{l} \textbf{Modbus} \rightarrow \textbf{Modbus} \ \textbf{RTU} \ \textbf{over} \ \textbf{TCP} \\ \textbf{port} \end{array}$	Povolení protokolu Modbus RTU over TCP			
TCP převodník aktivní	Povolení převosníku Ethernet <-> RS485			
SNTP → Aktivní	Povolení SNTP protokolu pro rozhraní ethernet			
SNTP \rightarrow IP Adresa 1	Primární IP adresa SNTP serveru			
$SNTP \rightarrow IP A dresa 2$	Rezervní IP adresa SNTP serveru, použitá v případě nedostupnosti primární IP adresy			

12.7. MQTT

Parametr	Popis			
Použít protokol MQTT	Povolení protokolu MQTT na rozhraní ethernet			
Server	Adresa MQTT serveru			
Port	Číslo portu určené pro komunikaci protokolu MQTT			
Použít TLS	Povolení zabezpečení TLS			
Uživatel	Uživatelské jméno pro přihlášení k MQTT serveru			
Heslo	Ověřovací heslo pro uživatelské jméno na MQTT serveru			
Statické ID	Aktivace statického ID			
ID	ID pro MQTT server			
Statické UID	Aktivace statického UID			
UID	UID pro MQTT server			
Online interval	Frekvence odesílání online souborů na MQTT server			
Reconnect interval	Časový interval pro opětovné pokusy o připojení k MQTT serveru v případě, že spojení bylo přerušeno			
Generované soubory	Výběr souborů, které budou odeslány do témat MQTT serveru			

PLA33RX:	
Zapsat konfiguraci Importovat konfiguraci Exportovat k	§ onfiguraci
Hlavní parametry Čas a datum Komunikace MQTT Nastaver	ní displeje Záznam dat Nastavení tarifu Příkazy O přístroji
Nastavení MQTT Použít protokol MQTT Server mqtLbmr.cz Pot 8883 Použít TLS Uživatel pla33xe Heslo pla33xetest Statické ID ID 1Plhug31XqLnGcXIRdvatk ✓ Statické UID UID PLA33RX_Fima_Test Online interval [s] 10 Reconnect interval [s] 5	Generované soubory Online data Harmonics U LN Harmonics Current Harmonics Current Harmonics U LN Percent Harmonics U LL Percent Harmonics Current Percent Online data max Harmonics U LN max Harmonics U LN max Harmonics U LN max Harmonics Current max Harmonics U LN Percent max Harmonics Current Percent max Online data avg Harmonics U LN avg Harmonics U LN avg Harmonics U LN avg Harmonics U LN Percent avg Harmonics U LN Percent avg Harmonics U LN Percent avg Harmonics U LL Percent avg Harmonics Current Percent avg

12.8. PROFIBUS

Zařízení vybavená rozhraním Profibus DP-V0 umožňují cyklickou výměnu dat, přičemž na tomto rozhraní může být odesláno nejvíce 244 bytů. Z tohoto důvodu umožňuje zařízení rozdělit komunikaci do čtyř různých profilů (stránek), které jsou vybrány prostřednictvím číselného přepínání (1 - 4) ve zprávách odesílaných z PLC.

Vrite configure Import con	figure Expo	rt configure	2			
avní parametry Časa a datum:	Komunikace	, Profibus	Vstupy/Výstupy	Alams	Nastaven í displeje	Log
Vrite configure						
Adresa: 10	•					
Name	Phase	Data type	Sca	ale	Start index	٨
Profile 1						V
Celkový 3F činný výkon	1	Float (4B)	1		0	v
Celkový 3F zdánlivý výkon	1	Float (4B)	1		4	
Celkový 3F power faktor	1	Float (4B)	1		8	
Frekvence	1	Float (4B)	1		12	
Fázové napětí 20 ms	1	Float (4B)	1		16	
Sdružené napětí 20 ms	1	Float (4B)	1		20	
Činný výkon	1	Float (4B)	1		24	
Cost	1	Float (4B)	1		28	

12.9. Vstupy / výstupy, alarmy

Přístroj obsahuje 4 digitální programovatelné vstupy / výstupy a dále tři reléové výstupy 3A/250VAC. PLA33RXE může být navíc osazen analogovým výstupem 4-20mA, tzv. proudovou smyčkou.

lavní parametry	Časa a datum:	Komunikace	Profibus	Vstupy/Výstupy	Alarms	Nastavení displeje	Log data	Tariff control	Comma
Výstupy R1				Vstu K1	ıpy/Výstu	іру			
Typ kanálu:		Digi_out	~	Тур	kanálu:		Digi_out	~	
Ovládání:		RS485	~	Ov	ádání:		RS485	~	
Po startu:		Vypnuto	~	Po startu:			Vypnuto ~		
Digi out:		Off	\sim	Digi out:		Off	~		
Invertováno:				Inv	ertováno				
Aktuálně: On :	= Sepnuto, Off =	Rozepnuto		Akt	uálně: Or	n = Sepnuto, Off = R	ozepnuto		
R2				-K2					
Typ kanálu:		Alarm_out	~	Тур	kanálu:		Pulse_out	\sim	
Invertováno:				Zdr	oj pulzů:		kWh_cons	umption 🗸	
Aktuálné: On :	= Sepnuto, Off = I	Rozepnuto		Vál	na pulzů:		100	-	
- R3				Inv	ertováno	:			
Typ kanálu:		Alarm_out	~	Akt	uálně: Or	n = Sepnuto, Off = R	ozepnuto		
Invertováno:	Consta Off			-K3					
Aktuaine: On a	= Sephuto, Off = I	Rozephuto		Тур	kanálu:		Alarm_out	\sim	
				Inv	ertováno				
				Akt	uálně: Or	n = Sepnuto, Off = R	ozepnuto		

Vstupy / výstupy mohou být ovládány pomocí jednoduchých logických komparátorů nebo lze definovat i složitější pravidla. Funkce vstupů / výstupů se definují pomocí grafického návrháře v konfiguraci přístroje software BMR Power Monitor System. Návrh je obdobný programování PLC. Pro různé funkční bloky se definují jednotlivé logické operace. Tímto univerzálním způsobem lze definovat funkce např. proudového relé nebo složitější tří stupňové ochrany fotovoltaické elektrárny.

12.10. Logování hodnot

Power Monitos System umožňuje zaznamenávat vybrané měřené hodnoty v určených časových intervalech a ukládat je do SQL databáze. Tato funkcionalita zahrnuje také možnost ukládání minimálních a maximálních hodnot. Při volbě intervalu ukládání je třeba brát v úvahu potenciální objem dat v databázi. V případě, že zařízení nemá vestavěnou interní flash paměť pro ukládání naměřených hodnot, provádí ukládání těchto hodnot do virtuální flash paměti. Tato virtuální paměť má omezenou kapacitu a je především využívána pro dočasné ukládání dat, která čekají na odeslání do softwaru PMS během komunikačního cyklu.

12.11. Nastavení tarifu

Nastavení ovládání tarifu pro měření energií. Tarif může být přepínán na základě I/O vstupu nebo pomocí časových programů.

12.12. Modbus registry

Podrobný popis Modbus registrů je k dispozici na stránkách firmy BMR, s.r.o.

13. Dodatky a technické parametry

Technické parametry:

Parametr	Hodnota
Napájecí napětí pro varianty PLA33RXEU230 / PLA33RXEU60	85 265VAC / 24 65DC/AC
Frekvence	50Hz nebo 60Hz
Proudový rozsah	0,01 - 5,3 A
Napěťový rozsah L-N	0 300 VAC
Vlastní spotřeba	1,5 VA
Vzorkovací frekvence 50/60Hz	25.60 kHz / 30.72kHz
Počet výstupů/vstupů	3 reléové 3A/250VAC, 4 digitální I/O, 4-20mA
Typ digitálních výstupů	open collector, optické oddělení (S0)
Max. napětí pro výstupy	24VDC
Max. proudové zatížení výstupu	100mA
Typ vstupu	optické oddělení
Max. napětí pro výstupy	24VDC
Max. proudový odběr vstupu	10mA
Max. frekvence pulsního výstupu	10Hz
Délka pulsu	50ms
Váha pulsu	1 50Wh (VArh)
Převodový poměr měřícího transformátoru napětí	1 1500
Převodový poměr měřícího transformátoru proudu	1 1500
Max. počet registrovaných výpadků	20
Datová paměť pro měřené parametry (volitelné)	1GB
Komunikační rozhraní (volitelné)	RS485 galvanické oddělení
Komunikační protokol	Modbus TCP, Modbus RTU over TCP, Modbus RTU, MQTT, DHCP, SNTP, ICMP, DNS, PROFIBUS DP - V0
Rychlost komunikace RS485	9,6 / 19,2 / 38,4 / 57,6 / 115 kBd
Kategorie měření	300V CAT III
Stupeň znečištění	2
Výřez do panelu	92 mm x 92 mm
Vestavná hloubka	90 mm
Váha	700g
Krytí	IP20 zadní kryt / IP54 čelní panel
Standardy, ČSN EN 61010 1 Doznačnostní nažadovlyvna alalstnialy měžia	(*(+) - (-) - (-) - (ČCN

Standardy: ČSN EN 61010-1 Bezpečnostní požadavky na elektrická měřicí, řídicí a laboratorní zařízení ČSN EN 62586-1 Měření kvality elektřiny v systémech elektrického napájení ČSN EN 61000-6-2 Elektromagnetická kompatibilita (EMC) - Část 6-2: Kmenové normy - odolnost pro průmyslové prostředí ČSN EN 61000-6-3 Elektromagnetická kompatibilita (EMC) - Část 6-3: Kmenové normy - Emise - Prostředí obytné, obchodní a lehkého průmysl